Latest


2026.01.21: Resources session 7.
2026.01.19: Resources session 6.
2025.12.13: Notebook session 5.
2025.12.08: Resources session 4.
2025.11.10: Resources session 3, exercise sheet 2 and solutions sheet 1.
2025.11.04: Solutions for notebook+minor fix original notebook.
2025.11.03: Notebook for session 2.
2025.09.29: Resources from lecture 1 (board+minor change exercise 1 sheet).
2025.09.28: Course webpage online.

Instructors

Clément Royer
clement.royer@lamsade.dauphine.fr

Back to the general teaching page

Optimization for Data Science

M2 MIAGE ID/ID Apprentissage, Université Paris Dauphine-PSL, 2025-2026


Aim of the course

     Provide modern algorithmic tools for data science problems.

Course material

     Lecture notes (Jan. 19) PDF

Session 1: Basics of optimization

     Virtual board

Session 2: Gradient methods (practice)

     Notebook: introduction to gradient descent (without solutions)
     Notebook: introduction to gradient descent (with solutions)

Session 3: Gradient methods (theory)

     Virtual board
     Illustration notebook (accelerated methods, nonconvex problems)

Session 4: Stochastic gradient (theory)

     Virtual board

Session 5: Stochastic gradient (practice)

     Notebook on stochastic gradient (without solutions)
     Notebook on stochastic gradient (with solutions)

Session 6: Regularization

     Virtual board
     Illustration notebook (l2 and l1 regularization)

Session 7: Summary and exercises

     Virtual board

Tutorial resources

     Tutorial 1 (basics on optimization, with solutions) PDF
     Tutorial 2 (gradient descent, with solutions) PDF
     Tutorial 3 (stochastic gradient, with solutions) PDF
     Tutorial 4 (regularization, with solutions) PDF
     Tutorial 5 (exam 2024-2025, with solutions) PDF


Materials on this page are available under Creative Commons CC BY-NC 4.0 license.
La version française de cette page se trouve ici.