Latest


2025.11.10: Resources session 3, exercise sheet 2 and solutions sheet 1.
2025.11.04: Solutions for notebook+minor fix original notebook.
2025.11.03: Notebook for lecture 2.
2025.09.29: Resources from lecture 1 (board+minor change exercise 1 sheet).
2025.09.28: Course webpage online.

Instructors

Clément Royer
clement.royer@lamsade.dauphine.fr

Back to the general teaching page

Optimization for Data Science

M2 MIAGE ID/ID Apprentissage, Université Paris Dauphine-PSL, 2025-2026


Aim of the course

     Provide modern algorithmic tools for data science problems.

Course material

     Lecture notes (Sep. 29) PDF

Session 1: Basics of optimization

     Virtual board

Session 2: Gradient methods (practice)

     Notebook: introduction to gradient descent (without solutions)
     Notebook: introduction to gradient descent (with solutions)

Session 3: Gradient methods (theory)

     Virtual board
     Illustration notebook (accelerated methods, nonconvex problems)

Tutorial resources

     Tutorial 1 (basics on optimization, with solutions) PDF
     Tutorial 2 (gradient descent) PDF


Materials on this page are available under Creative Commons CC BY-NC 4.0 license.
La version française de cette page se trouve ici.